
Pair-breaking effect on mesoscopic persistent currents

Hamutal Bary-Soroker,1,* Ora Entin-Wohlman,2,3 and Yoseph Imry1

1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
2Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel

3Albert Einstein Minerva Center for Theoretical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
�Received 23 April 2009; revised manuscript received 25 June 2009; published 16 July 2009�

We consider the contribution of superconducting fluctuations in the mesoscopic persistent current �PC� of an
ensemble of normal metallic rings, made of a superconducting material whose low bare transition temperature
Tc

0 is much smaller than the Thouless energy Ec. The effect of pair breaking is introduced via the example of
magnetic impurities. We find that over a rather broad range of pair-breaking strength � /�s, such that Tc

0

�� /�s�Ec, the superconducting transition temperature is normalized down to minute values or zero while the
PC is hardly affected. This may provide an explanation for the magnitude of the average PCs in copper and
gold as well as a way to determine their Tc

0’s. The dependence of the current and the dominant superconducting
fluctuations on Ec�s and on the ratio between Ec and the temperature is analyzed. The measured PCs in copper
�gold� correspond to Tc

0 of a few �a fraction of� mK.

DOI: 10.1103/PhysRevB.80.024509 PACS number�s�: 74.78.Na, 73.23.Ra, 74.40.�k, 74.25.Ha

I. INTRODUCTION

Equilibrium persistent currents �PCs�, flowing in normal
mesoscopic metallic rings, have been a challenge for both
experimentalists and theorists. The persistent current is a
manifestation of the Aharonov-Bohm effect—it appears
when the ring is threaded by a magnetic flux and it is peri-
odic in the flux enclosed in the ring.1,2 Due to energy-
averaging and phase-coherence limitations, one expects to
monitor in experiment only the lowest harmonics in the flux
quantum h /e.

Surprisingly enough, the magnitudes of the PCs measured
on huge collections of rings �107 copper rings3 and 105 silver
rings4� turned out to be larger than those expected theoreti-
cally. The periodicity observed in these large ensembles is
h /2e, i.e., half of the magnetic-flux quantum. On the other
hand, measurements on a single ring5,6 or on a small number7

of gold rings showed the h /e periodicity. In the collection of
30 gold rings,7 both the h /2e harmonic and the h /e harmonic
were observed. Overall, the sign of the amplitude of the h /2e
harmonic measured on metallic rings seems to indicate that
the low-flux response is diamagnetic.4,7

In the experiments on ensembles of rings,3,4,7 the average
PC was found by measuring the magnetic moment produced
by all rings, which was then divided by the number of rings,
N, to yield the net average current of a single ring. In most of
the experiments,3,4,6,7 the magnitude of the average PC at low
temperatures is roughly on the order of eEc /�. Here Ec
=�D /L2 is the Thouless energy, L is the circumference of the
ring, and D=vFlel /3 is the diffusion coefficient, where lel is
the elastic mean-free path and vF is the Fermi velocity. �We
consider the diffusive, L� lel, case.�

The first theoretical studies of the PC have been car-
ried out on grand-canonical systems of noninteracting
electrons.2,8 In these theories, the current in each ring is h /e
periodic. The sign and magnitude of the PC of the individual
rings vary randomly due to their high sensitivity to the dis-
order and to the system’s size. This results in a very small
average PC, which is dominated by the exponential factor
exp�−L /2lel�. Hence, the typical magnitude of the current is

predicted to be �N times the standard deviation of the PC of
noninteracting electrons, which at low temperatures is on the
order of eEc /�. Consequently, the persistent current carried
by noninteracting electrons is too small to explain the large-
ensemble experiments. Similarly, the PC predicted for non-
interacting electrons in the canonical ensemble9 is substan-
tially too small to explain the observed amplitude of the h /2e
harmonic.

The theory for interacting electron systems10,11 predicts
h /2e periodicity of the interaction-dependent part of the PC.
According to this theory, the average magnitude of the PC
per ring due to interactions is independent of the number of
rings. The total measured PC, divided by N, is thus expected
to have an N-independent contribution due to interactions
and an interaction-independent contribution proportional to
N−1/2. The presence of the h /e harmonic in the measurements
performed on a single ring5,6 and on a few7 rings, and its
absence in large ensembles,3,4 are in agreement with these
theoretical predictions. Experiments on a single ring12 and on
a large ensemble13 of semiconducting rings show the h /e and
the h /2e periodicities, respectively, consistent with the argu-
ments given above.

Notwithstanding the order of the harmonics, their ampli-
tudes, in particular, that of the h /2e one, remained unex-
plained for the large-ensemble measurements. On the other
hand, the magnitudes of the h /e harmonic measured in Refs.
6 and 7 agree roughly with the prediction for noninteracting
electrons, while the PC measured by Chandrasekhar et al.5

turns out to be much larger.
Here we study the PC of large ensembles focusing on the

role of electronic interactions. These attractive and repulsive
interactions of reasonable strengths give rise to comparable
magnitudes of the averaged PC �within an order of magni-
tude� but predict opposite signs. While repulsive electron-
electron interactions11 result in a paramagnetic response at
small magnetic fluxes, attractive interactions yield a diamag-
netic response,10 as indeed seems to be indicated in the ex-
periments. The magnitude of the PC predicted for electrons
which interact repulsively is smaller14 by a factor of about 5
than, e.g., the magnitude of the PC measured in copper.3 The
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effective coupling strength of repulsive interactions de-
creases as the temperature decreases due to interactions me-
diated by states whose energies are large compared with the
temperature.15,16 This “downward” renormalization is the
reason for the disagreement between the theory for electrons
interacting repulsively and the experiments.11 On the other
hand, the attractive interaction is normalized “upward” at
low temperatures16 and eventually leads to a superconduct-
ing state. One expects the magnitude of the averaged PC due
to attractive interactions, i.e., due to superconducting
fluctuations,17 to increase with the strength of the interaction,
or alternatively, to decrease as the �superconducting� transi-
tion temperature is reduced. Since the transition temperatures
of metals such as copper, gold, and silver—on which the PC
has been measured—are expected18 to be extremely small or
zero, Ambegaokar and Eckern10 have employed in their es-
timates small values of the attractive coupling. Consequently,
they came up with a magnitude for the PC which is again
smaller by a factor of order 5 than the measured one.3

In order to reconcile the relatively large interaction re-
quired to fit the experiments with the apparent absence of a
superconducting transition, we propose that the rings �of,
e.g., copper� contain a tiny amount of magnetic impurities.
We show that a small concentration of these pair breakers
may suffice to hinder the appearance of superconductivity
while hardly affecting the magnitude of the PC. Indeed, it
seems that a small amount of magnetic impurities is almost
unavoidable in metals such as copper. This is suggested by
recent experiments19 aimed to measure the temperature de-
pendence of the dephasing time in noble-metal samples.
Theoretically, one expects2,20 this rate to vanish as the tem-
perature goes to zero. However, it was found that the dephas-
ing time may cease to increase below a certain temperature.
This finding was attributed19 to the presence of a small con-
centration of magnetic impurities, which was reported to ex-
ist in these samples.

As is well known, magnetic impurities act as pair breakers
leading to the vanishing of the transition temperature Tc once
the spin-scattering rate 1 /�s is larger than the bare transition
temperature of the material without the magnetic impurities,
Tc

0.21 At the same time, superconducting fluctuations can re-
sult in a significant PC provided that the lifetime of a Cooper
pair ���s at low temperatures� is larger than the time it takes
it to encircle the ring, �� /Ec. �In the experiments3,4,7 Ec
�10 mK.� Therefore, the observation that the PC is almost
unaffected by magnetic impurities while Tc vanishes holds in
the range

Tc
0 � 1/�s � Ec, �1�

�from now on we use units in which �=1�.
It is instructive to write the above condition in terms of

lengths, for which Eq. �1� reads

L � Ls � ��0� , �2�

where

Ls = �D�s�1/2, and ��0� = �D/Tc
0�1/2. �3�

Here the magnetic-impurities scattering length Ls is the dis-
tance a diffusing electron covers during the time interval �s.

The bulk superconducting coherence length, in the absence
of magnetic impurities ��0�, is the characteristic distance be-
tween two electrons forming a Cooper pair. At low tempera-
tures, a Cooper-pair fluctuation can propagate a distance on
the order of Ls until it is destroyed due to the scattering by
magnetic impurities. When L�Ls, the pairs are sensitive to
the Aharonov-Bohm flux and consequently contribute sig-
nificantly to the PC. When pair breaking occurs on scales
smaller than the characteristics distance between two paired
electrons, i.e., when ��0��Ls, then the bulk material would
not become a superconductor. Therefore, rings made of al-
loys which are not superconducting in the bulk due to pair
breakers, will have PCs due to Cooper-pair fluctuations pro-
vided that Eq. �2� is satisfied. We show that the measured
amplitude of the h /2e harmonic in copper3 and gold7 rings
can be understood theoretically, assuming a minute, less than
one part per million, concentration of pair breakers. Similar
amounts of magnetic impurities were obtained for the most
purified copper and gold samples in Ref. 19. We point out
that according to our considerations, the measurement of the
PC provides a way to estimate Tc

0, which may well be un-
reachable by direct experiments.

This paper is organized as follows. In Sec. II and the
Appendix we derive the expression for the PC due to super-
conducting fluctuations taking into account the effect of pair
breakers. In Sec. III we characterize the dominant Matsubara
frequencies and wave numbers that contribute to the PC and
discuss the significant harmonics. In Sec. IV we expand the
expression for the PC in the limits of high and low tempera-
tures. The effect of pair breaking on the renormalization of
the attractive interaction is discussed in Sec. V. In Sec. VI we
present a detailed comparison of our results with the experi-
mental data and estimate Tc

0 for copper and gold. Finally, the
results are summarized in Sec. VII.

In our analysis, the effect of pair breaking is brought
about by the presence of magnetic impurities disregarding
the Kondo screening of the spins. Obviously one may con-
sider other pair breakers such as two-level systems,22 inelas-
tic scattering,23 or magnetic fields.24 Other effects of mag-
netic impurities have previously been considered in Ref. 25.

It was suggested by Kravtsov and Altshuler26 that the
measured currents have a different source than the equilib-
rium PC discussed so far. A nonequilibrium noise, for ex-
ample, a stray ac electric field, can cause a dc by a rectifica-
tion effect. In Ref. 26 it was shown that the measured signal3

may be explained provided that there exists such a nonequi-
librium noise. This mechanism is different from the one sug-
gested by us.

II. DERIVATION OF THE PERSISTENT CURRENT

The PC is obtained by differentiating the free energy of
electrons residing in a ring with respect to the magnetic flux
enclosed in that ring. In this section, we derive the term in
the free energy which results from superconducting fluctua-
tions. The system consists of diffusing electrons which inter-
act with each other attractively and are also scattered by
magnetic impurities that couple to their spin degrees of free-
dom. We use the Hamiltonian21
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H =� dr��	
†�r���H0 + u1�r��
	� + u2�r�S · �	�����r�

−
g

2
�	

†�r���
†�r����r��	�r�	 , �4�

in which the last term represents the attractive interaction,
with coupling g��0�. The spin components are 	 and � and
� is the vector of the Pauli matrices. The free spin-
independent part of the Hamiltonian is

H0 = �− i � − �2�/L�
x̂�2/2m − � , �5�

where m is the electron mass, � is the chemical potential,
and 
 is the magnetic flux through the ring, in units of h /e.
The unit vector x̂ points along the circumference of the ring
in the anticlockwise direction. The scattering, by both non-
magnetic and magnetic ions, is assumed to result from
Ni-pointlike randomly located impurities such that

u1�r� + u2�r�S · � 
 �
i=1

Ni �
�r − Ri� −
1

V
	�u1 + u2SRi

· �� ,

�6�

where V is the system volume.

We calculate the partition function Z using the method of
Feynman path integrals combined with the Grassmann alge-
bra of many-body fermionic coherent states27 in which the
superconducting order parameter is introduced by the
Hubbard-Stratonovich transformation.28 Details of this pro-
cedure are given in the Appendix. As is shown in the Appen-
dix, the partition function is �the temperature is denoted by
T�

Z = Z0�
q,�

�1 −
gT

V
��q,��	−1

, �7�

where the polarization,32

��q,�� =
1

2�
�

�	�K�	��q,�� , �8�

consists of the Cooperon-dominated contributions

K�	��q,�� = �
k1,k2


G		��k1 + q,k2 + q,� + ��

� �	���G����− k1,− k2,− ��� . �9�

Here � is the antisymmetric tensor, �		=0 and �↑↓=−�↓↑
=1, and G denotes the particle Green function.

In Ref. 21 the polarization ��q=0,�=0� was calculated
from the Dyson equation for the Cooperon. Their calculation
can be extended to general q ,�

K�	��q,�� = �
k

Ḡ		�k + q,� + ��Ḡ���− k,− ����	� + Ni�u1
		� + u2S · �		���u1
��� + u2S · �����K�	����q,��� . �10�

Here, Ḡ	�=
	�Ḡ		 is the Green function averaged over the
impurity disorder and spin components �which makes it di-
agonal in spin space�. Averaging over the impurity spins,

�u1
		� + u2S · �		���u1
��� + u2S · �����

= u1
2
		�
��� +

1

3
S�S + 1�� j

		�� j
���u2

2, �11�

is carried out employing Si=0 and SiSj =
ijS�S+1� /3 �where
i , j=x ,y ,z�.

Following Ref. 21 we assume that K�	�=�	�K� and then

using � j
		�� j

����	���=−3�	� we obtain

��q,�� = �
�

K��q,�� ,

K��q,�� = �1 + �2�N�0��−�−1K��q,���

� �
k

Ḡ�k + q,� + ��Ḡ�− k,− �� , �12�

where the averaged Green function is

Ḡ�p,�� = �i� − �p2/2m − �� + i sgn���/2�+�−1. �13�

�The spin indices are suppressed since Ḡ is independent of
them.� In Eqs. �12� and �13�,

1

��

= 2�N�0�Ni�u1
2 � S�S + 1�u2

2� , �14�

where N�0� is the extensive density of states at the Fermi
level. �Note that �+ is the elastic mean-free time.� Using Eq.
�13� to calculate the sum over k in Eq. �12� yields

�
k�

Ḡ�k� + q,� + ��Ḡ�− k�,− �� = 2�N�0��+ � ����� + ���

��1 − �+�2� + �� − Dq2�+� . �15�

Upon inserting this expression into Eq. �12� and solving it,
one finds

K��q,�� = 2�N�0������ + ��� � �Dq2 + �2� + �� + 2/�s�−1,

�16�

where 1 /�s is the pair-breaking rate
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1

�s
= 2�N�0�NiS�S + 1�u2

2. �17�

When �+��−, most of the disorder is due to the nonmagnetic
part. This, together with the assumption31 ��2�+�� ,Dq2�
�1 /�+, was used in obtaining Eq. �16�.

The summation in Eq. �12� over the Matsubara frequen-
cies can be written explicitly as

T

N�0�
��q,�� = �

ñ=0

� �ñ +
1

2
+

��� + 2/�s + Dq2

4�T
�−1

. �18�

Note that Eq. �18� also includes the negative Matsubara fre-
quencies. This sum does not converge and therefore a cutoff
is required. The cutoff frequency on the attractive interaction
is the Debye frequency �D and, consequently, the sum is
terminated at ñ=�D /2�T. As a result, the polarization is
given by

T

N�0�
��q,�� = ��1

2
+

�D

2�T
+

��� + 2/�s + Dq2

4�T
	

− ��1

2
+

��� + 2/�s + Dq2

4�T
	 , �19�

where � is the digamma function.
We next express the polarization in terms of the bare tran-

sition temperature of the system. This is the temperature at
which Z /Z0 diverges for ���=0 and the smallest possible �q�
in the absence of the pair breakers and the magnetic flux,

V

gN�0�
= ��1

2
+

�D

2�Tc
0	 − ��1

2
	 . �20�

Since �D� �Tc
0 ,T�, we may use the asymptotic expansion of

the digamma function,

��x � 1� � ln�x� , �21�

to obtain

Z = Z0�
q,�

� V

gN�0��ln� T

Tc
0	 + ��1

2
+

��� + 2/�s + Dq2

4�T
	

− ��1

2
	�−1	 . �22�

The effect of the pair breakers is represented by the term
2 /�s in the argument of the digamma functions.

As is mentioned above, the persistent current is given by

I = �e/2�� � T ln Z/�
 . �23�

The flux enters the expression for Z through the longitudinal
components of the momenta, see Eq. �A14�. In our ring ge-
ometry, only momenta of zero transverse components con-
tribute significantly to the current, since the contribution of
momenta of higher transverse components can be shown to
decay exponentially as a function of the ratio of L and the
transverse dimension �e.g., the height� of the ring.

As is seen in Eqs. �22� and �23�, the PC consists of two
parts. The first arises from differentiating Z0 and is the en-
semble averaged PC of noninteracting grand-canonical

normal-metal rings.8 This contribution is much too small to
account for the measured amplitude of the h /2e harmonic
�see Sec. I� and, therefore, will be omitted in the following.
The other part of the PC comes from the free energy due to
the superconducting fluctuations,

I = − 2eEc�
n,�

�n + 2
����F̃�n,���

ln�T/Tc
0� + ��F̃�n,��� − ��1

2
	 , �24�

where we have introduced the function

F̃�n,�� =
1

2
+

��� + 2/�s

4�T
+

�Ec

T
�n + 2
�2. �25�

In particular, one notes the h /2e periodicity in the flux. In-
deed, upon employing the Poisson summation formula

I = − 8eEc�
m=1

�
sin�4�m
�

m2

� �
�
�

0

�

dx
x sin�2�x����F�x,���

ln�T/Tc
0� + ��F�x,��� − ��1

2
	 , �26�

where

F�x,�� =
1

2
+

��� + 2/�s

4�T
+

�Ecx
2

m2T
. �27�

Clearly, the fluctuation-induced PC decreases as the pair-
breaking strength increases. Our central result is that this
decrease may be far less than the one caused in the transition
temperature.

In order to compare the dependence of the PC and the
transition temperature on the pair-breaking strength, we use
the expression21 for the transition temperature in the pres-
ence of both pair breakers and magnetic flux

ln�Tc

Tc
0	 + ��1

2
+

4�Ec

2

Tc
+

1

2�Tc�s
	 − ��1

2
	 = 0.

�28�

Here 
 is in the range −1 /2,1 /2, modulo unity.33 We plot in
Fig. 1 the amplitude of the h /2e harmonic of the PC, as well
as the transition temperature �in the absence of the flux� as
functions of the pair-breaking strength, using the dimension-
less parameter

0.1 1 10
0

0.5

1

s

I/I(s=0)

T
c
/T

c
0

FIG. 1. The h /2e harmonic �full line� and Tc /Tc
0 �dashed line� as

functions of the pair-breaking strength displayed on a logarithmic
scale. The current in units of I�s=0� is plotted for T=Ec and Tc

0

=0.1Ec. The PC reduction at s=10 corresponds to 1 /�s=�Ec.
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s = 1/�Tc
0�s. �29�

The transition temperature is reduced due to pair breaking
and vanishes at s=1 /2�E, where �E is the Euler constant. In
contrast, for Ec�1 /�s the PC is hardly affected for these
values of pair-breaking strengths.

Figure 2 portrays the PC plotted by numerically evaluat-
ing Eq. �26�. In each of the panels, the upper curve is drawn
for s=0 while the second curve corresponds to a pair-
breaking strength �see Eq. �28� and Fig. 1� which is large
enough to destroy Tc. Nonetheless, the PC is hardly affected
as long as Ls�L �see Eqs. �2� and �3��. The considerably
reduced PC due to a small Ls is presented by the dash-dotted
curves which correspond to Ls�0.5L. The effect of the tem-
perature on the magnitude of the PC is manifested by its
dependence of the ratio L /LT, where LT is the thermal length,

LT = �D/T , �30�

or equivalently the ratio T /Ec, see Fig. 2.

III. THE DOMINANT FLUCTUATIONS

Our result for the PC �see Eq. �24�� consists of infinite
sums over the frequencies and over the momenta. One natu-
rally asks oneself whether the characteristic features of the
expression are not given by the first few members of each
sum, notably the static, �=0, regime. It turns out that this is
not the case over most of the relevant range; to obtain the
correct magnitude of the fluctuation-induced PC, numerous
frequencies and momenta are required.

In order to study this aspect, it is convenient to express
the PC in a form which is more amenable to numerical com-
putations. To this end, we write Eq. �26� as

I =
2ieT

�
�
m=1

�

sin�4�m
��
�
�

−�

�

dxe2�ix

�
d

dx
ln���F�x,��� − ln�Tc

0/4�ET�� , �31�

where the function F is given in Eq. �27�. The x integration is
carried out by closing the integral in the upper half of the

complex plane. Two sets of simple poles can be identified in
the integrand of Eq. �31�. These sets result from �a� the zeros
and �b� the poles of the argument of the logarithm.34 The first
set of poles, denoted by xzero

� , is given by

��Fzero
� � = ln�Tc

0/4�ET� . �32�

The second set consists of the poles of the digamma func-
tion. These are denoted by xpole

� and are obtained from the
relation

Fpole
� = − �, � = 0,1,2, . . . �33�

The index � runs over the poles in each set. The two sets of
Fpole/zero

� given by Eqs. �32� and �33�, are shown in Fig. 3.
Performing the Cauchy integration, the current takes the

form35

I = − 4eT�
m=1

�

sin�4�m
�

� �
�

�
�=0

�

�exp�2�ixzero
� � − exp�2�ixpole

� �� . �34�

Here xpole/zero
� depends on the Matsubara frequency and the

harmonic index m,

xpole/zero
� = im� T

2�Ec
�1 +

��� + 2/�s

2�T
− 2Fpole/zero

� �1/2

.

�35�

Note that all the exponents �2�ix� in the two series in Eq.
�34� are negative and their absolute value increases with in-
creasing �, l, or m. As can be seen from Fig. 3, for each pair
of poles Fzero

� �Fpole
� and consequently �xzero

� �� �xpole
� �. This

ensures that the term in the square brackets of Eq. �34� is
positive and hence the response of the ring to a small flux is
diamagnetic as it should be.

A. The dominant imaginary time fluctuations

The dominant terms in Eq. �34� are those for which the
absolute value of x is smaller than unity, but if the absolute
values of all x are larger than one only the smallest �xzero

�=0��
=0,m=1�� is the dominant one. The absolute value of the
exponents �which are given by 2��xzero/pole�� is at least
���� /Ec�1/2. Thus, for Ec�T, the lowest �10Ec /T frequencies
have the dominant contribution to the PC. The proportional-

0

0.5

1

I/ I*
s=0
s=1
s=10

0 2 4 6 8
0

0.5

1

T/E
c

I/ I*
s=0
s=10
s=100

T
c
0=0.1E

c

T
c
0=0.01E

c

FIG. 2. The amplitude of the h /2e harmonic in units of I�=
−eEc as a function of the temperature for two values of Tc

0 /Ec and
several values of s. Note that the s=0 curve in the upper panel is
valid only for T /Tc�1+Gi, where Gi is the Ginzburg parameter.

−2 −1 0 1 2 3 4
−5

0

5

10

ψ(x)

x

l=0l=2 l=1

l=2 l=1 l=0

FIG. 3. The digamma function �solid line� and ln�Tc
0 /4�ET� for

Tc
0 /T=0.6 �dashed line�. The first three solutions Fzero

� of Eq. �32�
are marked on the x axis with their indices indicated below it. The
first values of the set Fpole

� , Eq. �33�, are marked by arrows.
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ity factor, of order 10, had been determined numerically and
resulted from the square-root structure of the exponents, see
Eq. �35�. At high temperatures T�Ec, the system is domi-
nated by the classical fluctuations, namely, by the first
�lowest energy�, �=0, Matsubara frequency. The effect of
the quantum fluctuations for which ��0 increases as the
temperature decreases. This tendency has an exception in
two cases. First, for very strong pair breaking 1 /�s
� �T ,Ec ,T2 /Ec� the significant quantum fluctuations that
have a dominant contribution to the PC are bounded by ���
��Ec /�s. Second, in the case of small or zero pair breaking
when T→Tc, only �=0 is the dominant frequency.36

When Tc is finite, the n=�=0 pole of the partition func-
tion, Eq. �7�, is the most dominant one as T→Tc. Conse-
quently, in this low-temperature regime, physical properties
including the PC are determined only by the �=0 fluctua-
tions pertaining to the static Ginzburg-Landau free energy.
We find, however, that in the case of a vanishing Tc, quantum
fluctuations, for which ��0, have a significant contribution
to the PC at low temperatures. Indeed, the quantum fluctua-
tions of a system with no magnetic impurities and for which
�
�2�Tc

0 / �16��EEc� have been recently invoked in the con-
text of the “strong” Little-Parks oscillations, see Ref. 24.

B. The dominant spatial fluctuations

The contribution of high Matsubara frequencies to the PC
involve many spatial frequencies q. Thus, at low tempera-
tures and for a vanishing Tc, many wave vectors contribute to
the PC. We have estimated numerically their number by
comparing the PC computed with a relatively small number
of frequencies and wave vectors with the exact result, Eq.
�34�, for T=Tc

0=0.1Ec and s=1. In this case �100 Matsubara
frequencies are required �see the parametric analysis in the
previous subsection�. The highest momenta, Eq. �A14�, that
contribute significantly are given by �n���1,5 ,100,1000�
for the frequencies � / �2�T�= �0,5 ,10,100�, respectively.37

Fig. 4 shows the PC as computed from Eq. �24� for different
maximal �q� values and without limiting the range of �. It
is thus seen that in the whole range of 
, the persistent cur-
rent is not mainly determined by the lowest momenta even
when the size of the system L is smaller than the thermal
length LT, Eq. �30�. This is different to the situation of cal-
culations of other properties �for example, weak-localization
corrections38 to the conductivity�, in which L�LT is taken as
a sufficient condition for using only q=0. We point out, how-
ever, that for Ec�1 /�s� �T ,Tc

0� at 
=0 the susceptibility
��I /�
�
=0 appears to be describable within a numerical fac-
tor of order unity using the smallest wave number only. Us-

ing the lowest three wave numbers gives almost quantita-
tively correct results for the susceptibility.

C. The dominant harmonics

Examining the series in Eq. �34�, one can see that
the maximal harmonic of the flux, mmax, that still has a
significant contribution to the current is given by
min��Ec /T ,�Ec�s� or by one if the first two values are
smaller than unity. This condition can be expressed in terms
of lengths as

mmax = min�Ls/L,LT/L�, or 1. �36�

The upper limit on the harmonics results from the fact that
the mth harmonic is associated with paths that encircle the
ring �coherently� m times and hence their length is at least
mL.39 The sinusoidal shape I�sin�4�
� at high temperatures
is modified due to higher harmonics as the temperature de-
creases. In the absence of magnetic impurities �upper panel
in Fig. 5�, the low-temperature current as a function of the
flux attains a sawtooth shape. Such a behavior is predicted
also for the equilibrium PC in superconductors at zero
temperature2 and for the persistent current in a clean system
of noninteracting electrons.40 In the presence of pair break-
ers, the upper bound on the harmonics, Eq. �36�, prevents the
current from reaching the sharp sawtooth shape. This sug-
gests, in principle, a way to experimentally confirm the role
of pair breaking for this problem. In the lower panel of Fig.
5 the current of a system with L�Ls is plotted for several
temperatures. At temperatures below 0.1Ec the shape of the
current does not change anymore.

IV. THE TEMPERATURE DEPENDENCE

Here we study the PC in the low- and high-temperature
regimes. In particular, we find that the PC decays exponen-
tially as the length of the ring exceeds the thermal length LT
or the magnetic-impurity scattering length Ls, whichever is
shorter.

−0.2 −0.1 0 0.1 0.2

−1

0

1
I/eE

c

φ

FIG. 4. The PC as computed from Eq. �24� with the summation
over n cut at 1000, 3, and 1 �solid, dashed, and dash-dotted curves,
respectively�. The plots are for T=Tc

0=0.1Ec and s=1.

−1

0

1

I/eE
c

−0.2 −0.1 0 0.1 0.2
−1

0

1

φ

I/eE
c

1/τ
s
=0

1/π T
c
0τ

s
=1

FIG. 5. The current in units of eEc as a function of the flux 
 for
Tc

0 /Ec=0.1; for several temperatures, T /Ec=5, 1, and 0.15 in the
solid, dashed, and dash-dotted curves, respectively. In the lower
panel the dash-dotted curve corresponds to T /Ec=0.1. For s=0 the
current attains the sawtooth form �upper panel� which is lost for s
=1 �lower panel�.
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A. High-temperature regime, Tšmax{1 Õ�s ,Tc
0 ,Ec}

When the temperature is much higher than all relevant
energy scales, i.e., T�max�1 /�s ,Tc

0 ,Ec�, the leading contri-
bution to the double sum in Eq. �34� comes solely from the
first pole xzero

�=0 of the lowest Matsubara frequency, �=0 �see
Eq. �35��. In this temperature range the h /2e harmonic cor-
responding to m=1 is the dominant one.

As the temperature increases, the horizontal line in Fig. 3
representing ln�Tc

0 /4�ET� moves further down so that Fzero
�=0

approaches zero. We use the expansion of the digamma func-
tion for small arguments in Eq. �32� and obtain

Fzero
�=0 = �ln�Tc

0/4�E
2T��−1. �37�

Upon substituting this result in the dominant term of Eq.
�34�, we obtain the current in the form

I � − 4eT sin�4�
�

� exp�−
L

LT
�2� +

2LT
2

Ls
2 −

4

� ln�4�E
2T/Tc

0��1/2	 .

�38�

We compare the full result, Eq. �34�, with the high-
temperature approximation, Eq. �38�, in Fig. 6. The differ-

ence between the contributions of the first xzero
�=0��=0� and the

second xpole
�=0��=0� poles to the PC is the absence of the third

term, which includes a logarithm �see Eq. �38��, in the expo-
nent of the latter. Therefore, this approximation improves as
Tc

0 increases.

B. Low-temperature regime, Tc™T™{1 Õ�s ,Ec}

In the low-temperature regime, the argument �F� of the
digamma function and its derivative is much larger than
unity �see Eq. �27�� so that we can use their asymptotic ex-
pansions ln�F� and 1 /F, respectively. Substituting these ap-
proximations in Eq. �26� gives

I = −
8

�
eT�

m=1

�

sin�4�m
�

� �
�
�

0

� x sin�2�x�dx

ln�4��EEc

Tc
0 �x2 + am,����x2 + am,��

, �39�

where am,�=m2����+2 /�s+2�T� / �4�2Ec�. For T�Tc the de-
nominator in Eq. �39� does not vanish. Then the term x2

+am,� in the logarithm in Eq. �39� can be replaced by 	am,�
with, say, 1�	�3. Consequently,

I � − 4eT�
m

sin�4�m
��
�

e−m��2�T/Ec��1+����+2/�s�/2�T/ln�2�E	T

Tc
0 �1 +

��� + 2/�s

2�T
	� . �40�

Since T�Ec, the summation over � can be replaced by an
integration. Approximating again, the logarithm by its value
at the dominant � of the integration yields

I � −
8

�
eEc�

m

sin�4�m
�
m2 �1 + m�2�L2

LT
2 +

2L2

Ls
2 �

� e−m��2�L2/LT
2�+�2L2/Ls

2�/ln� �E	Ec

�Tc
0m2 z̄� , �41�

where z̄=max�1,2m2 /�sEc�.
We compare in Fig. 7 the low-temperature approximation,

Eq. �41�, with the full result, Eq. �34�. As one can see from

this comparison, the flux dependence of the PC as well as its
amplitude are well approximated by Eq. �41�.

V. RENORMALIZATION OF THE EFFECTIVE
INTERACTION

In this section we calculate the PC to first order in the
interaction, in order to see whether it suffices to explain our
full result. To first order in the interaction, the contribution of
superconducting fluctuations to the free energy �see Eq. �7��
is

0 2 4 6 8 10
0

0.5

T/E
c

I/ I* exact
high temperature appr.

FIG. 6. The amplitude of the h /2e harmonic is plotted in units
of I�=−eEc as a function of the temperature for Tc

0 /Ec=0.1 and s
=1. The exact results can be approximated by Eq. �38� for T�Ec.
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−0.5

0
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I/eE

c
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exact
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FIG. 7. The current in units of eEc as a function of the magnetic
flux 
 plotted for T=0.1Tc

0=0.01Ec and s=1. The low-temperature
approximation Eq. �41� is compared with the exact result, Eq. �34�.
We take 	=3 in the logarithm of Eq. �41�.
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� = − �gT2/V��
q,�

��q,�� . �42�

The PC resulting from Eq. �42� has the same form as Eq.
�24� except that the denominator in the latter is replaced by
the bare interaction gN�0� /V. Had we tried to fit the experi-
mental data of Refs. 3 and 7 using Eq. �42�, we would have
taken the implausible ratio Ec�0.1�D �see Eq. �20��. This
first-order approximation fails because of screening effects,
which increase the magnitude of the effective attractive in-
teraction as the temperature decreases. Very roughly, the
renormalization of a dimensionless interaction ! from a
higher-frequency scale �� to a lower-frequency scale �� is
given by16

!���� = �!−1���� − ln���

��
	�−1

. �43�

For attractive interactions, ! is positive and the high-
frequency scale is �D. At T=Tc

0 and 1 /�s=0, the attractive
interaction should diverge. Using this to eliminate !��D�
�
gN�0� /V�, we obtain that for Tc

0����D,

!��� � 1/ln��/Tc
0� . �44�

Replacing in the first-order approximation for the current the
bare interaction by the effective interaction, Eq. �44�, gives

I1st = −
8eEc

ln��/Tc
0� �

m=1

�
sin�4�m
�

m2

� �
�
�

0

�

dxx sin�2�x����F�x,��� . �45�

The effective interaction is renormalized upward with de-
creasing energy and, for the bulk and no pair breaking, it
blows up at Tc

0. For 1 /�s�Tc
0, this renormalization stops at

1 /�s and Tc disappears. In the mesoscopic range, the Thou-
less energy, Ec, becomes a relevant scale and it may be ex-
pected �as is borne out by our results� that the PC at low
temperatures is determined by the interaction on that scale as
long as Ec�1 /�s. Once 1 /�s�Ec, we expect the renormal-
ization to “stop at 1 /�s” and the PC to be depressed. Thus,
the relevant range for our considerations is Tc

0�1 /�s�Ec.
Using these bounds on the energy scale of the renormalized
interaction in the first-order calculation, Eq. �45�, gives a
good agreement with our result, Eq. �34�. In Fig. 8 we plot
the amplitude of the h /2e harmonic as a function of T /Ec,
calculated from the full expression �26� �thin curves� and
from the first-order approximation Eq. �45� �bold curves�.
The plotted curves are for Tc

0=0.1Ec.
A more precise expression for the renormalized attractive

interaction depends on q ,� of the order-parameter fluctua-
tion. The renormalized attractive interaction !�q ,��, ob-
tained from an infinite series of diagrams containing Coop-
eron contributions, is given by32

!�q,�� = �!−1��D� −
T

N�0�
��q,���−1

. �46�

Upon substituting Eq. �19� in Eq. �46� one can identify
!�q ,�� from our result, e.g., by comparing Eq. �45� with Eq.
�24�.

VI. COMPARISON WITH EXPERIMENTS

Theoretically, only static magnetic fields have been con-
sidered here. However, experiments have been carried out
with an ac magnetic field. In the experiments on copper3 and
gold,7 the sweeping frequencies of the magnetic field were
very low �0.3 and 2 Hz, respectively�. Thus, one expects that
the measured PC could be explained using a theory for a
static magnetic field. In the experiment on silver, on the other
hand, a very high sweeping frequency of the magnetic field
was used �217 MHz�. It is plausible that in order to explain
the results of Ref. 4 one may not confine oneself to a static
magnetic field. We therefore do not attempt to explain the
experiment of Ref. 4.

Here we explain the h /2e signal observed in copper3 and
gold7 using our result, Eq. �34�. In the left six columns of

0 1 2 3 4 5
0

0.5

1

T/E
c

I/ I*
s=0
s=1
s=10

FIG. 8. The first-order approximation for the h /2e harmonic of
the current Eq. �45� �bold lines� is compared with the exact result
�thin lines�. Here Tc

0=0.1Ec. In drawing the former, we have used
the simplest expression for the cutoff �=T+Ec+1 /�s.

TABLE I. Experimental parameters in the left six columns. The magnitude of the h /2e periodic current
�column 4� is given for the lowest temperature �column 3� reached in the experiment. The dephasing length
L" is given together with the temperature at which it was measured. The last column is our estimate for a
lower bound on Tc

0 according to Eq. �34�, see also Fig. 9.

Ec

�mK�
T

�mK� I /eEc

L
��m�

L"

��m� Minimum Tc
0

Coppera 15.0 7.0 1.0 2.2 2 �1.5 K� A few mK

Goldb 4.9 5.5 0.65 8.0 16 �0.5 K� A fraction of a mK

aReference 3.
bReference 7.
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Table I, we summarize the experimental parameters for the
�h /2e�-periodic signal.41 The metals used in the experiments
are not superconductors at any measured temperature in their
bulk form. Therefore, it is not possible to obtain theoretically
a large enough PC �to match the measurements3,7� due to the
attractive interaction without pair breaking; the required Tc
�1 mK is too high to be considered as realistic. We suggest
that the bare transition temperature may indeed be on the
order of a mK but the transition temperature of the real ma-
terial is considerably reduced due to pair breakers. Together
with this assumption, the necessary condition to fit the ex-
periments is 1 /�s��Tc

0 /2�E so that Tc vanishes or is very
strongly depressed,21 see Eq. �28�. This condition can also be
written as

Tc
0

Ec
�

2�E

�
� L

Ls
	2

. �47�

Note that we need Ls�L in order not to depress the PC �Eq.
�34��. The upper limit on Tc

0, corresponding to the equality in
Eq. �47�, is given by the solid line in Fig. 9. The values for
Tc

0 /Ec that correspond to a vanishing Tc are in the region
below this line. In the dashed and dash-dotted curves in Fig.
9, different values of L /Ls are matched with an appropriate
Tc

0 /Ec so that the measured values in columns 2–4 of Table I
remain the same.

The monotonically increasing shape of the curves in Fig.
9 results from the fact that higher values of Tc

0 /Ec are re-
quired to describe the experiments as L /Ls increases. The
minimal Tc

0’s correspond to the points where the dashed and
the dash-dotted lines cross the solid line. In this way we
obtain estimates of the lower bounds on the value of Tc

0 for
copper and gold. These lower bounds are given in the sev-
enth column of Table I.

These estimates of Tc
0 are very sensitive �see Eqs. �41� and

�45�� to the experimental parameters. For example, Ref. 3
points out that the measured values of the PC are correct up
to a factor of 2. The exact minimal value of Tc

0 that satisfies
Eq. �47� for copper, based on the values quoted in Table I, is
4 mK. However, assuming half of the value reported in Ref.
3 for the PC results in a minimal Tc

0 of about 0.3 mK. The
curves in Fig. 9 ignore the error bars in the experiments.
Thus, the values of Tc

0 /Ec in this figure should be considered
only as rough estimates.

Besides spin-flip scattering from magnetic impurities, de-
coherence of the electrons is also caused by other processes,

e.g., electron-phonon inelastic interactions. Hence Ls is al-
ways larger or on the order of the dephasing length. A lower
bound on Ls is given by equating it to the measured L".
Those values �see Table I� are small enough to fulfill the
condition in Eq. �47�. In other words, we could account for
the data of copper and gold since the measured L" was small
enough. This is not the case for silver,4 where L /L"�=0.3� is
too small to explain the result I�T=4.6Ec�=1.6eEc using Eq.
�34�. Our theory is not applicable to that experiment. We
believe that the reason for that, as explained above, is the
high frequency used in that experiment.

VII. DISCUSSION

In our result for the PC, Eq. �34�, there appears the bare
transition temperature and not the one reduced by the pair-
breaking mechanism. Therefore we propose the scenario, in
which the bulk transition temperature vanishes due to the
pair-breaking mechanism, while the PC is dominated by a
relatively high attractive interaction.

The bulk Tc vanishes due to pair breaking for Ls���0�.
However, we find that the PC may still be hardly affected by
pair breaking. The physical reason for that is that as long as
Ls�L, the Cooper-pair fluctuations can complete a circle
around the ring before being magnetically scattered and
hence respond to the Aharonov-Bohm flux. The PC is im-
mune to pair breaking in the regime given by Eq. �2� where
the bulk form is normal. This is demonstrated in Figs. 1 and
2.

In the pair-breaking regime given by Eq. �2�, the upper
bound on the dominant quantum fluctuations ���0� is deter-
mined by the Thouless energy. Dominant fluctuations of high
Matsubara frequencies necessitate high wave numbers.
Therefore, at low temperature T�Ec, high wave numbers
are involved too in the dominant fluctuations �see Fig. 4� in
contrast to the effective dimensional reduction occurring in
other phenomena when L�LT, notably weak-localization
corrections.38 The maximal number of flux harmonics that
contribute to the PC, Eq. �36�, is bounded due to thermal
fluctuations and due to spin-flip scattering. Consequently, in
a system with magnetic impurities, even at zero temperature
the PC may not have the sawtooth shape, which appears for
the PCs without pair breaking, see Fig. 5.

The effective interaction is renormalized upward with de-
creasing energy; for the bulk it stops at �max�Tc

0 ,1 /�s�
�which explains why Tc disappears for 1 /�s�Tc

0�. In the me-
soscopic range, Ec�Tc

0, the Thouless energy sets another
bound for the energy scale at which the renormalization
stops. In Sec. V it is shown that these considerations agree
with our result for the PC, Eq. �34�, see Fig. 8.

We found that in the high-temperature regime, the PC
decreases exponentially with L /Ls or with L /LT, whichever
is larger. The explicit exponential decay of the PC with L /Ls
in both the high- and the low-temperature regimes �Eqs. �38�
and �41�, respectively� for L�Ls is in agreement with the
qualitative argument of Eq. �2�. Note that Eq. �41� is appli-
cable only at very low temperatures such that T� �Tc

0 ,Ec�.
The experiments on copper3 and gold7 rings correspond to
Tc

0�1 mK, thus, Eq. �41� can be used only at very low

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

T
c
0/E

c

L/L
s

FIG. 9. The bare transition temperatures corresponding to the
measured PC as a function of L /Ls. The dashed and dash-dotted
curves correspond to the PC measured in copper and gold, respec-
tively. The solid curve gives the maximal possible Tc

0 satisfying
Tc=0.
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temperatures T�1 mK. In the experiments, the lowest tem-
perature was �10 mK and, therefore, the measured PC can-
not be precisely fitted by the approximate expression �41�. In
the low-temperature regime the dependence of the PC on Tc

0

is logarithmically weak �see Eq. �41��. This weak depen-
dence explains why in Ref. 10, where the transition tempera-
ture was taken as 10 �K �in the absence of pair breaking�,
the result was smaller only by a factor of �5 compared with
the experiment.3

Interestingly enough, it follows from our work that by
measuring the PC and the pair-breaking strength, one may
determine Tc

0 which would be directly measurable only if
enough low-temperature pair breaking could be eliminated.
This elimination is very hard to achieve in some materials.
Our result, Eq. �26�, can explain the large PC of Refs. 3 and
7 with Ls value larger than �or on the order of� the measured
L" value �see Table I and Fig. 9�. Even though Ls was not
measured in the PC experiments, we obtain a lower bound on
the bare transition temperatures for copper and gold. These
minimal Tc

0’s correspond to minimal pair-breaking strength
given by Ls�5 �m in the copper sample3 and Ls�25 �m
in the gold sample.7 The fitted maximal Ls’s can be caused
by a very low �less than one part per million� concentration
of magnetic impurities. These concentrations seem appropri-
ate for the purest copper and gold samples available
experimentally.19 Although, a full consideration of the effect
of the magnetic impurities, including Kondo physics, is still
necessary.

Our result concerning the fundamentally different sensi-
tivities of Tc and PCs to pair breaking is valid regardless of
the situation in specific materials. Our idea can be tested, for
example, by measuring the persistent currents in very small
rings made of a superconducting material whose transition
temperature is known, as functions of possible pair-breaking
mechanisms. For Ec�100 mK, say, and a material with Tc

0

of a few 10 mK, the range of pair breaking which satisfies
Eq. �1� becomes easier to control experimentally.
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APPENDIX: DERIVATION OF THE PARTITION
FUNCTION

Here we derive, using the method of Feynman path inte-
gral, the partition function, Eq. �7�. In terms of the Grass-

mann variables �	�r ,�� ��̄	�r ,��� the partition function
reads

Z =� D���r,��,�̄�r,���exp�− S̃� , �A1�

where the action S̃ is

S̃ =� dr�
0

#

d���̄��r,�������r,�� + H�r,��� . �A2�

Here #=1 /T and H is given by the integrand of the Hamil-
tonian, Eq. �4�, with Grassmann variables �of the same
imaginary time� replacing the creation and annihilation op-
erators. Introducing the bosonic fields ��r ,�� via the
Hubbard-Stratonovich transformation, the partition function
takes the form

Z =� D���r,��,�̄�r,���D���r,��,���r,��� � exp�− S� ,

�A3�

where the differential of the bosonic field ��r ,��,
D���r ,�� ,���r ,���, contains a factor of #V /�g. The action
S is given by

S =� dr�
0

#

d�� ���r,���2

g
−

1

2
�̄�r,��Gr,r;�,�

−1 ��r,��	 ,

�A4�

where �̄= ��̄↑ , �̄↓ ,�↑ ,�↓� and the inverse Green function
G−1 �at equal positions r and equal imaginary times �� is

Gr=r�;�=��
−1 = �

− �� − h↑

 − 2u2S− 0 �

− 2u2S+ − �� − h↓

 − � 0

0 − �� − �� + h↑
−
 2u2S+

�� 0 2u2S− − �� + h↓
−

�


 �Ĝp
−1 �̂

�̂† Ĝh
−1� . �A5�

Here h	
�
=H0��
�+u1+sgn�	�Szu2 and S�= �Sx� iSy� /2,

where sgn�↑ �=1 and sgn�↓ �=−1.
The integration over the fermionic part in Eq. �A3� yields

Z =� D���r,��,���r,���exp�1

2
Tr ln�#G−1�

−� dr�
0

#

d�
���r,���2

g 	 . �A6�

We expand Tr ln�#G−1� up to second order29 in �

Tr ln�#G−1� = Tr ln�#G0
−1� −

1

�#V�2� � � � drdr�d�d�� Tr�Ĝp�r�,��;r,���̂�r,��Ĝh�r,�;r�,����̂†�r�,���� . �A7�
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The inverse Green function for noninteracting electrons, G0
−1,

is given by Eq. �A5� for �=0. The first term on the right-
hand side of Eq. �A7�, which is of zeroth order in �, gives
rise to the partition function of noninteracting electrons, Z0
=det�#G0

−1�.
In Eq. �A7�, Gp �Gh� is the particle �hole� Green function.

These functions are the solutions of

Ĝp/h
−1 �r,��Ĝp/h�r,�;r�,��� = 
�r − r��
�� − ��� , �A8�

where Gp/h
−1 are defined in Eq. �A5�. As can be seen in that

equation, the particle and the hole inverse Green functions
are related to one another by

Ĝh
−1�r,�,
,S+,S−,Sz� = − Ĝp

−1�r,− �,− 
,S−,S+,Sz� .

�A9�

Therefore,

Ĝh�r,�;r�,��,
,S+,S−,Sz�

= − Ĝp�r,− �;r�,− ��,− 
,S−,S+,Sz�

= − Ĝp�r,��;r�,�,− 
,S−,S+,Sz� , �A10�

where in the last equality we have used time-translational
invariance to shift � and �� by �+��. Reversing the sign of
the flux 
 together with interchanging r and r� leads to the
relation �the superscript t denotes the transposed matrix�

Ĝp�r,��;r�,�,− 
,S−,S+,Sz� = Ĝp
t �r�,��;r,�,
,S+,S−,Sz� .

�A11�

We have used Eqs. �A10� and �A11� to replace the hole
Green function in Eq. �A7� by a particle Green function.

Then, in momentum representation, the second term on the
right-hand side of Eq. �A7� reads30

Tr ln�#G−1��2nd = �
q1,q2,�

�
k1,k2,�

Tr�Ĝp�k1 + q1,k2 + q2,�

+ ���̂�q2,��Ĝp
t �− k1,− k2,− ���̂†�q1,��� .

�A12�

The flux dependence is incorporated into the momenta p,
where p2 /2m−� are the eigenvalues of H0�
�. Thus, the
longitudinal components of the momenta in the Green func-
tion G have the form

2��n + 
�/L , �A13�

while those of the momenta in the boson field � are

2��n + 2
�/L , �A14�

where n is an integer. The Matsubara frequencies of the
Green functions, �+� and −�, are fermionic �=��2n+1�T�.
The order-parameter fluctuations are characterized by the
Matsubara bosonic frequencies �=2�nT.

The resulting expression for the partition function may be
simplified since the terms that survive the disorder average in
the sum of Eq. �A12� are those for which31 q1=q2. Follow-
ing Ref. 31, we disorder average over the exponent in Eq.
�A6� rather than over the free energy to obtain an answer
which is correct to leading order in ���+�−1. Finally we trace
over the product of the 2�2 matrices in Eq. �A12� and in-
tegrate over � in Eq. �A6�. In this way we obtain the parti-
tion function, Eq. �7�.
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